Skip to main content

Building anti-fragile technology systems

The Covid-19 outbreak which resulted in the government-mandated shutdown has exposed a lot of weakness in the technological systems we use to manage our day to day life. Apart from the negative effects on the economy and the loss of life and livelihood, Covid-19 is a wake-up call for all the people who build and manage large systems and especially those of us building or thinking of building future AI systems, we have to build anti-fragile systems.



A lot of systems that depend on the most sophisticated forecasting technologies of our times broke down when they faced the unexpected reaction from the pandemic. Some of them are listed below

1. Financial anti-fraud systems broke because consumers changed their behaviour. For example, credit card companies often flag a card as possibly stolen if the purchase pattern associated with it suddenly changes. But this rule of thumb doesn’t work well when huge swaths of society start working from home and stop going to restaurants and malls.
2. Logistics models used to predict supply and demand broke when manufacturers, shippers, and consumers changed their behaviour. Trained on last year's data, a model that predicts 1,000 widgets arriving on time next month can’t be trusted anymore.
3. Online services receiving a new surge or plunge in users are rethinking their demand estimation models since earlier models no longer are accurate. source: deeplearning.ai
What does this teach us? The natural reaction would be that we build systems that are more robust or disaster resilient. But what does robustness or disaster resiliency really mean? In the world of AI, it could mean getting more and more data to train models that can handle larger swaths of unexpected input, or in traditional systems engineering, it might be adding more redundancy, building systems based on more flexible constraints on input, etc.

While all these traditional approaches to designing robust and disaster-resilient systems are all well and good, we should be expanding the fundamental assumptions about what it means to have intelligent systems from systems that just recognize patterns from input data to systems that modify their own internal designs to cope adaptively with more chaos in the environment.

Nassim Taleb the father of the philosophy of Anti-fragility defines an anti-fragile system as one that benefits from disorder rather than one that abhors it.

As engineers charged with the responsibility of building future AI, our goal should not be to focus on systems that we can only improve incrementally in a gradual iterative fashion by adding more data and then even more because no matter how much data we get it cannot really protect us from black swan-like events except we build insurance against these kinds of events directly into the root of the systems. Our algorithms should not abhor uncertainty but rather embrace uncertainty and radically self-improve from it.

Intelligence must include adaptation to uncertainty besides pattern recognition, and these should be the basis of systems not just in AI but every other critical large human-technology system from supply chains to medicine, etc.

Comments

  1. Excellent information, I am heartily thankful to you that you have shared this information with us. I got some different kind of knowledge from your article, and it is helpful for everyone. Thanks for share it. Expansion Joint Cover Supplier

    ReplyDelete
  2. You have a genuine capacity to compose a substance that is useful for us. You have shared an amazing post about Cover Supplier. Much obliged to you for your endeavors in sharing such information with us. Expansion Joint Cover Supplier

    ReplyDelete

Post a Comment

Popular posts from this blog

Virtual Reality is the next platform

VR Headset. Source: theverge.com It's been a while now since we started trying to develop Virtual Reality systems but so far we have not witnessed the explosion of use that inspired the development of such systems. Although there are always going to be some diehard fans of Virtual Reality who will stick to improving the medium and trying out stuff with the hopes of building a killer app, for the rest of us Virtual Reality still seems like a medium that promises to arrive soon but never really hits the spot.

Next Steps Towards Strong Artificial Intelligence

What is Intelligence? Pathways to Synthetic Intelligence If you follow current AI Research then it will be apparent to you that AI research, the deep learning type has stalled! This does not mean that new areas of application for existing techniques are not appearing but that the fundamentals have been solved and things have become pretty standardized.

New Information interfaces, the true promise of chatGPT, Bing, Bard, etc.

LLMs like chatGPT are the latest coolest innovation in town. Many people are even speculating with high confidence that these new tools are already Generally intelligent. Well, as with every new hype from self-driving cars based on deeplearning to the current LLMs are AGI, we often tend to miss the importance of these new technologies because we are often engulfed in too much hype which gets investors hyper interested and then lose interest in the whole field of AI when the promises do not pan out. The most important thing about chatGPT and co is that they are showing us a new way to access information. Most of the time we are not interested in going too deep into typical list-based search engine results to get answers and with the abuse of search results using SEO optimizations and the general trend towards too many ads, finding answers online has become a laborious task.  Why people are gobbling up stuff like chatGPT is not really about AGI, but it is about a new and novel way to...